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ABSTRACT 

In-cylinder pressure analysis is becoming more and 
more important both for research and development 
purpose and for control and diagnosis of internal 
combustion engines; directly measured by means of a 
combustion chamber pressure transducers or evaluated 
by analysing instantaneous engine speed [1,2,3,4], in-
cylinder pressure allows the evaluation of indicated 
mean effective pressure (IMEP), combustion heat 
release, combustion phase, friction pressure, etc...It is 
well known to internal combustion engine researchers 
that for a right evaluation of these quantities the exact 
determination of Top Dead Centre (TDC) is of vital 
importance: a 1° error on TDC determination can lead to 
evaluation errors of about 10% on the IMEP and 25% on 
the heat released by the combustion. In this paper the 
authors present the experimental validation of an original 
thermodynamic method for the correct evaluation of the 
“loss angle”, i.e. the angular phase shift between the 
TDC location and the pressure peak location. The 
validation has been carried out on a spark ignition 
engine comparing the results of the thermodynamic 
method, whose input is the in-cylinder pressure acquired 
in a “motored” cylinder (i.e. without combustion), with 
those obtained from a commercial available TDC 
sensor. The comparative tests aimed to characterize the 
precision of the proposed method. 

INTRODUCTION 

In-cylinder pressure analysis is nowadays an 
indispensable tool in internal combustion engine 
research & development. It allows the measure of some 
important performance related parameters, such as 
indicated mean effective pressure, mean friction 
pressure, indicated fuel consumption, heat release rate, 
mass fraction burned, etc. Moreover, future automotive 
engine will probably be equipped with in-cylinder 
pressure sensors for continuous combustion monitoring 
and control, in order to fulfil the more and more severe 
emission limits. For these reasons, in-cylinder pressure 
analysis must be carried out with maximum accuracy, in 
order to minimize the effects of its characteristic 
measurement errors. The exact determination of the top 
dead centre (TDC) position is of vital importance, since a 

1° crank angle (CA) error can cause up to a 10% 
evaluation error on IMEP and 25% error on the heat 
released by the combustion: the position of the 
crankshaft (and hence the volume inside the cylinder) 
should be known with the accuracy of at least 0.1 crank 
angle degrees (CAD), which is not an easy task, even if 
the engine dimensions are well known. A good TDC 
determination can be pursued by means of a dedicated 
capacitive TDC sensor, which allows a dynamic 
measurement (i.e. while the cylinder is motored) with the 
required 0.1 degrees accuracy. Such a sensor has a 
substantial cost and its use is not really fast, since it 
must be fitted in the spark plug hole of the cylinder. A 
different approach can be followed using a 
thermodynamic method whose input is the in-cylinder 
pressure, sampled in a “motored” cylinder during the 
compression and expansion strokes: some of these 
methods can be found in literature [1, 2, 3, 4, 5, 6]. This 
paper will discuss a new thermodynamic method for the 
TDC position evaluation together with the experimental 
validation. 

THE THERMODYNAMIC METHOD: BASE 
THEORY 

The compression and expansion processes in a motored 
engine can be described observing the energy 
transformations regarding the unitary mass which 
remains in the cylinder. The first law of thermodynamics 
states that: 

uvpq δδδ =−    (1) 

where δq represents the specific heat received by the 
gas from the cylinder walls during the crank rotation δϑ, 
p and v represent the gas pressure and specific volume, 
while δu is the specific internal energy variation. 

The gas involved in the process can be assumed to be a 
perfect gas, thus the following equations are also valid: 
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being T the gas temperature, R’ the gas constant, cP and 
cV the constant pressure and constant volume specific 
heat. 

The compression-expansion process in a motored 
engine can be assumed to be frictionless, hence the 
second law of thermodynamics states that the specific 
entropy variation δS of the in-cylinder gas in the crank 
rotation δϑ  is: 

T
qS δδ =    (3) 

thus, from equation (1) and (2) the specific entropy 
variation results: 
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Due to mass leakage through piston rings and valve 
seats, the available volume V for the in-cylinder gas 
increases, hence its specific volume changes: 
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where m represent the in-cylinder mass. 

Hence, considering the finite increment “δ“ due to a 
crank rotation δϑ, the specific entropy variation in 
equation (4) will now result: 
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being δm the mass escaping from the cylinder (hence 
δm≤0) during the crank rotation δϑ; hence the in-cylinder 
pressure changes is: 
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here δQ=m δq represents the heat received by the gas 
and k is the isentropic coefficient =cP/cV. Equation (7) 
shows that, in an ideal adiabatic (δQ=δm=0) motored 
engine, pressure would reach its maximum (δp=0) when 
the volume is minimum (δV=0), hence the Location of 
Peak Pressure (LPP) would coincide with the TDC 
position: in the temperature-entropy diagram the in-

cylinder pressure evolutions would be represented by 
two coincident segments (AB and BA in figure 1), being 
δS=0. In a real motored engine the pressure variation is 
caused both by volume changes and by two phenomena 
related to the real machine, i.e. the heat transferred δQ 
(which is negative when the gas temperature is higher 
than wall temperature, i.e. δQ∝(TW-TGAS)) and the mass 
leakage δm (which is negative whenever in-cylinder 
pressure is higher than outer pressure): hence, from 
equation (4), δS ≠ 0. Equation (7) clearly shows that 
both heat transfer and mass leakage cause pressure 
rise to be zero when the volume changes are still 
negative (i.e. during compression), hence the pressure 
curve becomes asymmetric, with respect to the TDC, 
shifting the LPP in advance with respect to the TDC 
position (see the diabatic evolution in figure 1 or the real 
pressure curve in figure 2). The angular distance 
between LPP and TDC location (LTDC) is the so called 
“loss angle” (ϑloss in figure 2), which can assume values 
between 0.4 and 1 crank angle degrees (CAD) 
depending on the entity of the heat transfer and mass 
leakage. 

ϑloss= LPP−LTDC   (8) 
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figure 1 Temperature-Entropy diagram of the compression-expansion 
process in a motored cylinder: ideal engine (segments AB and BA) and 
diabatic engine (dashed curve); the peak pressure (point D) occurs 
before the TDC (point E). 
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figure 2 Qualitative progress of in-cylinder pressure and volume near 
TDC 

The loss angle represents the error committed when the 
(motored) pressure curve is phased with respect to 



volume by setting LPP=0. Since it can be significantly 
greater than the allowable TDC position error of 0.1 
degrees, it is safer to be able to evaluate it. Equation (6) 
shows that two easily measurable quantities, the in- 
cylinder pressure and volume, allow the evaluation of 
the entropy variation (i.e. heat transfer) together with the 
mass leakage by means of the functions δV/V and δp/p, 
which are plotted as example in figure 3; defining the 
“loss function” F so that: 
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it will result: 
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The entity of the variation of the “loss function” δF, which 
gathers the sum of the two “losses”, is then determined 
by the capability of the cylinder walls to exchange heat 
with the gas and by the amount of gas escaping from the 
cylinder. The qualitative progress of the “loss function” 
variation in a real cylinder during a compression-
expansion process, together with its two constitutive 
terms δS and cP δm/m, is shown for example in figure 4: 
as can be seen entropy variation (which depends on the 
difference Tgas-Twall) and mass leakage (related to the 
difference between in-cylinder pressure and outer 
pressure) have a similar trend, reaching a minimum near 
the TDC: it follows that, in this position, the δF value is 
the sum of the two loss angle causes. Following this 
concept the authors tried to draw information on the loss 
angle entity directly from the loss function variation. 
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figure 3 Qualitative progress of δV/V and δp/p (δϑ=1 crank angle 
degree) 

When the gas pressure reaches the peak value (i.e. at 
the LPP), the ratio δp/p is zero, and equation (9) 
becomes: 

LPP
pLPP V

VcF ⎥⎦
⎤
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⎡=

δδ     (11) 

Equation (11) shows that at the peak pressure position 
the knowledge of the function δF allows to determine the 
value of δV/V (see figure 3) which, depending only on 
engine geometry, is a known function of the crankshaft 
position, i.e. of the loss angle. 
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figure 4 Loss function variation δF and its constitutive terms vs. crank 
position (δϑ=1 crank angle degree). 

The function δV/V can be expressed as: 
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where ρ is the compression ratio and μ is the rod to 
crank ratio (i.e. the ratio between connecting rod length 
and crank radius). Since the loss angle is normally 
around 1 degree (=0.017radians), further 
approximations can be made: 

sin(ϑloss) ≈ ϑloss    and    cos(ϑloss) ≈ 1 

Thus at the LPP equation (12) becomes: 
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Hence, being ϑ2
loss<<μ2, equations (13) and (11) yield: 
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This demonstrates that the loss angle can be easily 
correlated to the loss function increment δF evaluated at 
the peak pressure position. Unfortunately the δF 
undergoes great distortions even with small phase errors 



between δp/p and δV/V. Figure 5 shows some δF curves 
calculated assuming different phase errors (expressed 
as a fraction of the loss angle). As can be seen, even 
phasing the pressure diagrams with the loss angle error 
(setting LPP=0) a considerable evaluation error on δFLPP 
would be introduced. This fact, without a reliable way to 
evaluate the δF at peak pressure position, would make 
equation (14) useless. 
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figure 5 Loss function increment δF for different phase errors (δϑ=1 
crank angle degree) 

The figure 5 however shows the existence of two zones 
in which the various curves assume the same values: 
here (about ±30 CAD ATDC in figure 3) the two 
functions δp/p and δV/V reach their extreme values and 
hence are poorly influenced by a little phase error (such 
as the loss angle); for this reason, according to equation 
(9), in these two crank positions the loss function 
increment remains almost unchanged. This means that 
assuming a TDC position error equal to the loss angle 
(easily achievable setting LPP=0), the values assumed 
by the loss function variation δF1 and δF2 in the two 
positions relative to the minimum and maximum δV/V, 
will be nearly correct. Hence, in order to determine the 
loss angle from equation (14), a correlation between δF1, 
δF2 and δFLPP has been evaluated [7]: it has been found 
that, for a given engine, a proportionality relation exists 
between δFLPP and δFm (the mean value between δF1 
and δF2): 
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The constant Ep in equation (15) can be evaluated once 
the engine geometry and the heat transfer law are 
known and can be assumed equal to 1.95 as first 
approximation; this value has been determined in [7]. 

Summarizing, once the pressure cycle has been 
sampled, the procedure for the TDC estimation consists 
of 5 simple steps, here resumed: 

1. the phase of the pressure cycle is adjusted setting 
LPP=0 (in this way the position error is exactly equal 
to the loss angle). 

2. evaluation of the angular position ϑ1 and ϑ2 of the 
minimum and maximum δV/V, for example using the 
following equation [7] 

0.4660.123
1,2 ρμ76.307 −⋅⋅= mϑ   (16) 

where ρ is the engine compression ratio while μ is 
the rod to crank ratio (i.e. the ratio between the rod 
length and the crank radius). 

3. calculus of the loss function increments δF1 and δF2 
at the angular position ϑ1 and ϑ2 by means of 
equation (9) and hence calculus of their mean value 
δFm=1/2 (δF1+δF2). 

4. Evaluation of the loss function increment at the peak 
pressure position δFLPP by means of the mean value 
δFm through the proportionality constant Ep (equation 
(15)) which can be assumed to be 1.95 [7]. 

5. The loss angle ϑloss, and hence the TDC location, 
can be evaluated by means of equation (14). 

EXPERIMENTAL TESTS 

In order to verify the capability of the proposed method 
to determine the TDC position, some experimental tests 
have been carried out using a FIAT four cylinders spark 
ignition engine, whose characteristics are reported in 
table 1, connected to an eddy-current dynamometer. 

Number of 
cylinders 4 

Displacement 1242 [cc] 

Bore 70.8 [mm] 

Stroke 78.9 [mm] 

Compression ratio 9.8 

Rod/Crank ratio 3.27 
Table 1 engine characteristics 

The in-cylinder pressure has been measured in a 
motored cylinder on different conditions of manifold 
absolute pressure (MAP) and engine speed using an 
AVL GU13X piezoelectric sensor (installed by means of 
its ZC32 spark plug adaptor), while the MAP has been 
measured by means of a DRUCK piezoresistive 
pressure sensor. 
The TDC location has been measured under the same 
condition of MAP and engine speed by means of a 
capacitive Kistler TDC sensor system 2629B placed in 
the spark plug hole of the motored cylinder; the 
measurement accuracy of this kind of sensor is 0.1° CA. 
The data acquisition has been performed by the use of a 
National Instruments DAQ card 6062, using a 360 ppr 
encoder to trigger and clock the acquisition, thus 
sampling both pressure and TDC sensor signal with 1 
crank angle degree resolution. 

 



TDC LOCATION MEASUREMENT 

A typical TDC sensor signal is visible in figure 6; it has 
been acquired using an Agilent 100MHz oscilloscope 
with 0.005 ms sample period that corresponds, at 1500 
rpm engine speed, to a crank rotation of 0.045°. The 
same signal has been downsampled with 1 CAD 
resolution (figure 7) and interpolated, in a range of 7 
CAD around the maximum, by means of a 4th degree 
polynomial, which was then used to compute the 
location of the maximum value, obtaining the same TDC 
position of the curve sampled with a 0.045 CAD 
resolution. The same procedure has been followed using 
many different TDC sensor curves acquired by means of 
the oscilloscope at different engine speed, obtaining 
always a precise matching of the TDC positions. This 
demonstrates that a 1 CAD sampling resolution allows 
the estimation of the TDC position with the required 
accuracy of 0.1 degrees. This procedure has also been 
applied to in-cylinder pressure curves using a 3rd order 
polynomial, confirming the capability to appraise the 
location of peak pressure with the same accuracy of 0.1 
degrees.  
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figure 6 A typical TDC sensor signal acquired with 0.005 ms resolution 
(1500 rpm) 
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figure 7 An example of TDC sensor signal, acquired with 1 CAD 
resolution, fitted by a 4th degree polynomial 

For each test condition 100 consecutive TDC sensor 
curves have been acquired, one for each engine cycle 
(720° CA). For each curve the 4th degrees polynomial 
fitting procedure has been applied thus obtaining the 
TDC location with the required accuracy of 0.1 degrees. 
In table 2 the results of all tests are reported in terms of 
mean TDC location and scattering. As can be seen the 
measured TDC location was 0.28 CAD, with a scattering 
(i.e. the difference between the maximum and the 
minimum value), over the different test conditions, inside 
the range of the sensor measurement accuracy (±0.06 
CAD), while the mean scattering over 100 consecutive 
curves was ±0.21° CA (see the last column of table 2). 

engine speed 
[rpm] 

MAP 
[bar] 

mean TDC 
location [°CA] 

scattering 
[°CA] 

1500 0.4 0.29 ±0.22 
1500 0.5 0.29 ±0.23 
1500 0.6 0.33 ±0.21 
2000 0.4 0.21 ±0.20 
2000 0.5 0.34 ±0.20 
2000 0.6 0.34 ±0.24 
2500 0.4 0.24 ±0.21 
2500 0.5 0.24 ±0.19 
2500 0.6 0.29 ±0.25 
3000 0.4 0.28 ±0.14 
3000 0.5 0.27 ±0.17 
3000 0.6 0.24 ±0.20 

 mean 0.28 ±0.06 ±0.21 
Table 2 TDC location 

TDC DETERMINATION BY MEANS OF THE 
THERMODYNAMIC METHOD 

The method proposed for the TDC position evaluation 
requires the measure of in-cylinder pressure under 
motored condition. In order to apply the method 
proposed, each pressure curve has to be phased setting 
LPP=0 CAD: in this way a positioning error equal to the 
loss angle is committed. 
The in-cylinder pressure has been interpolated by 
means of a 3rd degree polynomial in a range of 7 CAD 
around the maximum pressure value for the LPP 
determination; a 3rd degree polynomial was also used to 
fit the δp/p values in a range of 40 CAD around the two 
locations corresponding to the minimum and maximum 
δV/V: this procedure corresponds to a low-pass filtering 
that eliminates the high frequency noise, allowing a 
reliable evaluation of the loss function increment δF. 
On the base of the fitting polynomial, the δp/p and hence 
the δF values have been calculated in the two locations 
of minimum and maximum δV/V (i.e. around ±30 CAD 
ATDC for the engine used in the test). The loss angle 
has been then calculated using equations (15) and (14), 
in which has been assumed cp=1060 J/kg K and cv=773 
J/kg K considering the mean gas temperature between 
30° CA BTDC and LPP. From equation (8) it was then 
possible to evaluate the TDC location. 



Since the used pressure transducer is a piezoelectric 
sensor the pressure curves had to be compensated in 
order to obtain the absolute values. Three different 
techniques have been taken into consideration to 
compensate the pressure curves [8, 9]: 

• MAP method: the in-cylinder pressure value at 
bottom dead centre (BDC) is changed to match 
the MAP value (measured by the apposite 
sensor) at the same CA. 

• Mean MAP method: the in-cylinder pressure 
value at bottom dead centre (BDC) is changed 
to match the mean MAP value measured along 
the whole engine cycle (720° CA). 

• Polytropic exponent method: the pressure curve 
is shifted imposing the exponent γ of the 
polytropic transformation during the 
compression phase of the gas. 

In order to evaluate the influence of pressure curves 
compensation on the results, both the MAP method and 
Polytropic exponent method where used. The latter was 
employed considering five different polytropic exponent 
values (1.30, 1.32 … 1.38). 
Thus, for each test condition, the 100 acquired pressure 
curves were firstly compensated and then employed for 
the thermodynamic evaluation of the TDC position. 
The values obtained for the loss angle (ϑloss) and TDC 
position, for every test condition, are reported in table 4 
(polytropic exponent compensation with γ =1.34); each 
result represents the mean of 100 values, whose 
scattering is also reported in the last column. Table 4 
also shows the values of measured loss angle 
(LTDCmeasured - LPP). The loss angle values (ϑloss) and TDC 
position calculated for each compensation method are 
reported in table 5: here only the mean values over the 
different test conditions are reported (i.e. the last row in 
table 4). It is clear that the thermodynamic method 
results are quite unaffected by the compensation 
method used.  

engine 
speed 
[rpm] 

MAP 
[bar] 

measured 
ϑloss [°CA] 

evaluated 
ϑloss [°CA] 

scattering 
ϑloss [°CA] 

TDC 
[°CA] 

scattering 
[° CA] 

1500 0.4 -0.82 -0.72 1.52 0.19 ±1.52 
1500 0.5 -0.79 -0.78 1.09 0.28 ±1.04 
1500 0.6 -0.74 -0.75 0.94 0.34 ±0.92 
2000 0.4 -0.73 -0.76 1.48 0.24 ±1.45 
2000 0.5 -0.73 -0.49 1.32 0.11 ±1.24 
2000 0.6 -0.70 -0.76 1.02 0.40 ±0.97 
2500 0.4 -0.75 -0.63 1.31 0.12 ±1.40 
2500 0.5 -0.73 -0.64 1.00 0.15 ±0.99 
2500 0.6 -0.75 -0.63 0.83 0.18 ±0.83 
3000 0.4 -0.68 -0.64 1.14 0.25 ±1.15 
3000 0.5 -0.74 -0.56 0.88 0.10 ±0.93 
3000 0.6 -0.67 -0.46 0.72 0.02 ±0.72 

mean  -0.73 
±0.08 

-0.65 
±0.16 ±1.10 0.20 

±0.19 ±1.10 

Table 4 Results of the thermodynamic method (pressure curves 
compensated by means of the polytropic index γ =1.34) 

The mean value of the TDC found by means of 
thermodynamic method (table 4, column 6), is quite 
coherent with the mean measure obtained by the use of 
the TDC sensor: 0.20 and 0.28 CAD respectively. 
Moreover the scattering of the mean values, over the 
different test conditions, is ±0.19 CAD that is three times 
the scattering obtained by the use of the TDC sensor 
(±0.06 CAD). If the scattering over the 100 values of 
each test condition is considered (see last column in 
table 2 and 4) the thermodynamic method gives values 
of ±1.10 CAD against the ±0.21 CAD of the sensor. The 
authors consider this a quite satisfactory result, since the 
method is based on the pressure curves values which 
are affected both by measurement uncertainties and by 
cycle-by-cycle variations even under motored conditions. 

Compensation 
method 

Mean 
ϑloss 

[°CA] 

Mean 
scattering 
ϑloss [°CA] 

Mean 
TDC 
[°CA] 

Mean 
scattering 

TDC [°CA] 

MAP -0.65 
±0.18 ±1.09 0.19 

±0.18 ±1.08 

Polytropic 
exponent 
γ=1.30 

-0.65 
±0.16 ±1.09 0.19 

±0.19 ±1.08 

Polytropic 
exponent 
γ=1.32 

-0.65 
±0.16 ±1.10 0.19 

±0.19 ±1.09 

Polytropic 
exponent 
γ=1.34 

-0.65 
±0.16 ±1.10 0.20 

±0.19 ±1.10 

Polytropic 
exponent 
γ=1.36 

-0.66 
±0.16 ±1.11 0.20 

±0.19 ±1.10 

Polytropic 
exponent 
γ=1.38 

-0.66 
±0.16 ±1.12 0.21 

±0.19 ±1.11 

Table 5 Influence of pressure curves compensation 

CONCLUSIONS 

In this paper a new thermodynamic method for the TDC 
determination based on the in-cylinder pressure analysis 
has been validated by means of experimental tests. The 
TDC location, obtained by the use of the thermodynamic 
method, has been compared with the measure carried 
out by means of a commercial TDC sensor: the results 
obtained show a quite good matching. The scattering of 
TDC position mean values, over the different test 
conditions, are also quite similar, and this represents a 
good result too, considering that the thermodynamic 
method is based on the analysis of pressure curves. The 
thermodynamic method shows a good prediction 
capability poorly by changes in operative conditions 
(namely crankshaft speed and MAP) and by pressure 
measurement uncertainties. 
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DEFINITIONS, ACRONYMS, ABBREVIATIONS 

TDC: top dead centre 

ATDC: after top dead centre 

BTDC: before top dead centre 

CA: crank angle 

CAD: crank angle degrees 

IMEP: indicated mean effective pressure 

LPP: location of peak pressure [CAD] 

MAP: manifold absolute pressure [bar] 

LTDC measured: TDC location measured by the TDC sensor 
[CAD] 

δY: increment of the generic function Y for a crank 
rotation δϑ 

q: specific heat received by the gas from the cylinder 
walls [J/kg] 

p: gas pressure [Pa] 

v: gas specific volume [m3/kg] 

V: in-cylinder volume [m3] 

TW: cylinder walls mean temperature [K] 

TGAS: gas mean temperature [K] 

u: specific internal energy of the gas [J/kg] 

R’: gas constant [J/kg K] 

cp, cv: constant pressure and constant volume specific 
heat of the gas [J/kg K] 

S: gas specific entropy [J/kg K] 

m: mass of the in-cylinder gas [kg] 

Q: heat received by the mass m of the gas from the 
cylinder walls [J] 

δF: loss function variation for a given δϑ crank 
rotation[J/kg K] 

Greek 

δϑ: finite crank rotation 

ϑ: crank angle [CAD] 

ϑloss: loss angle [CAD] 

ρ: engine compression ratio 

μ: rod to crank ratio 

γ: polytropic exponent 


